102 research outputs found

    A Dataset for Movie Description

    Full text link
    Descriptive video service (DVS) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their peers. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed DVS, which is temporally aligned to full length HD movies. In addition we also collected the aligned movie scripts which have been used in prior work and compare the two different sources of descriptions. In total the Movie Description dataset contains a parallel corpus of over 54,000 sentences and video snippets from 72 HD movies. We characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing DVS to scripts, we find that DVS is far more visual and describes precisely what is shown rather than what should happen according to the scripts created prior to movie production

    Ask Your Neurons: A Neural-based Approach to Answering Questions about Images

    Full text link
    We address a question answering task on real-world images that is set up as a Visual Turing Test. By combining latest advances in image representation and natural language processing, we propose Neural-Image-QA, an end-to-end formulation to this problem for which all parts are trained jointly. In contrast to previous efforts, we are facing a multi-modal problem where the language output (answer) is conditioned on visual and natural language input (image and question). Our approach Neural-Image-QA doubles the performance of the previous best approach on this problem. We provide additional insights into the problem by analyzing how much information is contained only in the language part for which we provide a new human baseline. To study human consensus, which is related to the ambiguities inherent in this challenging task, we propose two novel metrics and collect additional answers which extends the original DAQUAR dataset to DAQUAR-Consensus.Comment: ICCV'15 (Oral

    Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding

    Full text link
    Modeling textual or visual information with vector representations trained from large language or visual datasets has been successfully explored in recent years. However, tasks such as visual question answering require combining these vector representations with each other. Approaches to multimodal pooling include element-wise product or sum, as well as concatenation of the visual and textual representations. We hypothesize that these methods are not as expressive as an outer product of the visual and textual vectors. As the outer product is typically infeasible due to its high dimensionality, we instead propose utilizing Multimodal Compact Bilinear pooling (MCB) to efficiently and expressively combine multimodal features. We extensively evaluate MCB on the visual question answering and grounding tasks. We consistently show the benefit of MCB over ablations without MCB. For visual question answering, we present an architecture which uses MCB twice, once for predicting attention over spatial features and again to combine the attended representation with the question representation. This model outperforms the state-of-the-art on the Visual7W dataset and the VQA challenge.Comment: Accepted to EMNLP 201

    Movie Description

    Get PDF
    Audio Description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their peers. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length movies. In addition we also collected and aligned movie scripts used in prior work and compare the two sources of descriptions. In total the Large Scale Movie Description Challenge (LSMDC) contains a parallel corpus of 118,114 sentences and video clips from 202 movies. First we characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are indeed more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production. Furthermore, we present and compare the results of several teams who participated in a challenge organized in the context of the workshop "Describing and Understanding Video & The Large Scale Movie Description Challenge (LSMDC)", at ICCV 2015

    Attentive Explanations: Justifying Decisions and Pointing to the Evidence (Extended Abstract)

    Full text link
    Deep models are the defacto standard in visual decision problems due to their impressive performance on a wide array of visual tasks. On the other hand, their opaqueness has led to a surge of interest in explainable systems. In this work, we emphasize the importance of model explanation in various forms such as visual pointing and textual justification. The lack of data with justification annotations is one of the bottlenecks of generating multimodal explanations. Thus, we propose two large-scale datasets with annotations that visually and textually justify a classification decision for various activities, i.e. ACT-X, and for question answering, i.e. VQA-X. We also introduce a multimodal methodology for generating visual and textual explanations simultaneously. We quantitatively show that training with the textual explanations not only yields better textual justification models, but also models that better localize the evidence that support their decision.Comment: arXiv admin note: text overlap with arXiv:1612.0475

    Multimodal Explanations: Justifying Decisions and Pointing to the Evidence

    Full text link
    Deep models that are both effective and explainable are desirable in many settings; prior explainable models have been unimodal, offering either image-based visualization of attention weights or text-based generation of post-hoc justifications. We propose a multimodal approach to explanation, and argue that the two modalities provide complementary explanatory strengths. We collect two new datasets to define and evaluate this task, and propose a novel model which can provide joint textual rationale generation and attention visualization. Our datasets define visual and textual justifications of a classification decision for activity recognition tasks (ACT-X) and for visual question answering tasks (VQA-X). We quantitatively show that training with the textual explanations not only yields better textual justification models, but also better localizes the evidence that supports the decision. We also qualitatively show cases where visual explanation is more insightful than textual explanation, and vice versa, supporting our thesis that multimodal explanation models offer significant benefits over unimodal approaches.Comment: arXiv admin note: text overlap with arXiv:1612.0475
    • …
    corecore